SCIENZE DELLA FORMAZIONE PRIMARIA (LM63)

(Lecce - Università degli Studi)

Insegnamento Elementi di fisica e	9
astronomia	

GenCod A005531

Docente titolare Achille NUCITA

Insegnamento Elementi di fisica e

astronomia

Insegnamento in inglese Elements of

physics and astronomy **Settore disciplinare FIS/05** Anno di corso 2

Lingua ITALIANO

Percorso GENERALE

Corso di studi di riferimento SCIENZE DELLA FORMAZIONE PRIMARIA

Tipo corso di studi Laurea Magistrale a Sede Lecce

Ciclo Unico

Crediti 8.0 Periodo Secondo Semestre

Ripartizione oraria Ore Attività frontale: Tipo esame Orale

Per immatricolati nel 2022/2023

Valutazione Voto Finale

Orario dell'insegnamento **Erogato nel** 2023/2024

https://easyroom.unisalento.it/Orario

BREVE DESCRIZIONE DEL CORSO

Astronomia e Astrofisica

PREREQUISITI

Nessun prerequisito richiesto

OBIETTIVI FORMATIVI

Conoscenze e comprensione. Possedere una solida preparazione in campo astronomico

Capacità di applicare conoscenze e comprensione: # essere in grado di risolvere semplici problemi

di natura astronomica, # essere in grado di formalizzare alcuni processi astrofisici

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l'insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente. Lo svolgimento di problemi in cooperazione tra gli studenti pffrirà un metodo per valutare il

raggiungimento degli obiettivi proposti.

METODI DIDATTICI

lezioni frontali ed esercitazioni in aula

MODALITA' D'ESAME

orale

PROGRAMMA ESTESO

Programma

Cenni di trigonometria sferica. Il triangolo sferico. Le formule del coseno e del seno. Distanza tra due punti di una superficie sferica. La longitudine e latitudine terrestre. La figura della Terra. Esempi ed esercizi.

Il sistema Terra-Sole: i moti della Terra. La misura del tempo in astronomia: il tempo siderale, il tempo solare medio, il tempo universale, il tempo sideralie medio di Greenwich, il tempo atomico, il tempo universale coordinato, il tempo terrestre e del baricentro. La data Giuliana.

Il Sole, la Luna e brevi cenni sulle caratteristiche dei pianeti del Sistema Solare. I moti reali e fittizi dei pianeti del Sistema Solare. Stima della massa e della densità dei pianeti. Il fenomeno delle eclissi lunari e solari.

Sistemi di riferimento celesti: sistema altazimutale, sistema orario (o primo equatoriale), sistema equatoriale (o secondo equatoriale), sistema eclittico e sistema galattico.

Il moto apparente delle stelle. Nascere e tramontare di un astro e calcolo del tempo di culminazione. Esempi ed esercizi.

L'aberrazione della luce: l'aberrazione solare, stellare, e planetaria, effetti dell'aberrazione sulle coordinate di un astro, la delflessione gravitazionale della luce. Il moto proprio delle stelle.

Il problema dei due corpi: formalismo newtoniano, il problema di Keplero,l'equazione dell'orbita, classificazione geometrica ed energetica di un'orbita, l'equazione di Keplero e la sua soluzione numerica. Calcolo della velocità orbitale e della velocità lungo

la direzione di vista. Applicazioni (I): la funzione di massa di un sistema binario, i transiti di un pianeta extrasolare. Applicazioni (II): orbita di trasferimento di Hohmann, orbita bi-ellittica di trasferimento di Hohmann.

Le misure di distanza in astronomia: la parallasse trigonometrica, la parallasse diurna, annua e secolare. La distanza di un ammasso aperto e di un ammasso di stelle. Le stelle variabili RR lyrae e Cefeidi come indicatori di distanza, la legge di Hubble ed il red-shift.

Gli strumenti astronomici.

Sorgenti puntiformi ed estese. Luminosità e flusso. Il corpo nero.

Scala delle magnitudini. La magnitudine apparente e

assoluta, gli indici di colore e la temperature di colore. Diametri stallari fotometrici. Cenni sui sistemi fotometrici: Vega e Johnson-Cousin-Glass.Conversione da magnitudine a unità SI.

Magnitudine bolometrica e correzione bolometrica. Sorgenti risolte diffuse. Assorbimento interstellare.

Cenni sulla classificazione di Harvard. Cenni sulla classificazione spettrale di Yerkes. Diagramma di Hertzprung-Russell. Popolazioni stellari. Variabili pulsanti ed eruttive.

Sistemi binari e masse stellari: binarie visuali, astrometriche, spettroscopiche e fotometriche. Evoluzione di un sistema binario. Sistemi planetari: pianeti extrasolari e i principali metodi di scoperta.

Eventuali prerequisiti: ---Libri e materiale didattico:

1) Dispense.

Testi consultabili

- 2) Bradt H. Astronomy Methods: a physical approach to astonomical observations
- 3) Bradt H.-Astrophysics processes: the physics of astronomical phenomena.
- 4) Smart W.M., Textbook on spherycal astronomy.
- 5) Karttunen H. et al., Fundamental astronomy.
- 6) Montenbruck O., & Pfleger, T., Astronomy on the Personal Computer

Modalità d'esame: Orale

TESTI DI RIFERIMENTO

Dispense,

- 2) Bradt H. Astronomy Methods: a physical approach to astonomical observations
- 3) Bradt H.-Astrophysics processes: the physics of astronomical phenomena.
- 4) Smart W.M., Textbook on spherycal astronomy.
- 5) Karttunen H. et al., Fundamental astronomy.
- 6) Montenbruck O., & Pfleger, T., Astronomy on the Personal Computer

